skip to main content


Search for: All records

Creators/Authors contains: "Jin, Sian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Lossy compression is one of the most efficient solutions to reduce storage overhead and improve I/O performance for HPC applications. However, existing parallel I/O libraries cannot fully utilize lossy compression to accelerate parallel write due to the lack of deep understanding on compression-write performance. To this end, we propose to deeply integrate predictive lossy compression with HDF5 to significantly improve the parallel-write performance. Specifically, we propose analytical models to predict the time of compression and parallel write before the actual compression to enable compression-write overlapping. We also introduce an extra space in the process to handle possible data overflows resulting from prediction uncertainty in compression ratios. Moreover, we propose an optimization to reorder the compression tasks to increase the overlapping efficiency. Experiments with up to 4,096 cores from Summit show that our solution improves the write performance by up to 4.5× and 2.9× over the non-compression and lossy compression solutions, respectively, with only 1.5% storage overhead (compared to original data) on two real-world HPC applications. 
    more » « less
  2. As parallel computers continue to grow to exascale, the amount of data that needs to be saved or transmitted is exploding. To this end, many previous works have studied using error-bounded lossy compressors to reduce the data size and improve the I/O performance. However, little work has been done for effectively offloading lossy compression onto FPGA-based SmartNICs to reduce the compression overhead. In this paper, we propose a hardware-algorithm co-design for an efficient and adaptive lossy compressor for scientific data on FPGAs (called CEAZ), which is the first lossy compressor that can achieve high compression ratios and throughputs simultaneously. Specifically, we propose an efficient Huffman coding approach that can adaptively update Huffman codewords online based on codewords generated offline, from a variety of representative scientific datasets. Moreover, we derive a theoretical analysis to support a precise control of compression ratio under an error-bounded compression mode, enabling accurate offline Huffman codewords generation. This also helps us create a fixed-ratio compression mode for consistent throughput. In addition, we develop an efficient compression pipeline by adopting cuSZ's dual-quantization algorithm to our hardware use cases. Finally, we evaluate CEAZ on five real-world datasets with both a single FPGA board and 128 nodes (to accelerate parallel I/O). Experiments show that CEAZ outperforms the second-best FPGA-based lossy compressor by 2X of throughput and 9.6X of ratio. It also improves MPI_File_write and MPI_Gather throughputs by up to 28.1X and 36.9X, respectively. 
    more » « less
  3. Today's scientific simulations require a significant reduction of data volume because of extremely large amounts of data they produce and the limited I/O bandwidth and storage space. Error-bounded lossy compression has been considered one of the most effective solutions to the above problem. However, little work has been done to improve error-bounded lossy compression for Adaptive Mesh Refinement (AMR) simulation data. Unlike the previous work that only leverages 1D compression, in this work, we propose to leverage high-dimensional (e.g., 3D) compression for each refinement level of AMR data. To remove the data redundancy across different levels, we propose three pre-process strategies and adaptively use them based on the data characteristics. Experiments on seven AMR datasets from a real-world large-scale AMR simulation demonstrate that our proposed approach can improve the compression ratio by up to 3.3X under the same data distortion, compared to the state-of-the-art method. In addition, we leverage the flexibility of our approach to tune the error bound for each level, which achieves much lower data distortion on two application-specific metrics. 
    more » « less
  4. Error-bounded lossy compression is one of the most effective techniques for reducing scientific data sizes. However, the traditional trial-and-error approach used to configure lossy compressors for finding the optimal trade-off between reconstructed data quality and compression ratio is prohibitively expensive. To resolve this issue, we develop a general-purpose analytical ratio-quality model based on the prediction-based lossy compression framework, which can effectively foresee the reduced data quality and compression ratio, as well as the impact of lossy compressed data on post-hoc analysis quality. Our analytical model significantly improves the prediction-based lossy compression in three use-cases: (1) optimization of predictor by selecting the best-fit predictor; (2) memory compression with a target ratio; and (3) in-situ compression optimization by fine-grained tuning error-bounds for various data partitions. We evaluate our analytical model on 10 scientific datasets, demonstrating its high accuracy (93.47% accuracy on average) and low computational cost (up to 18.7× lower than the trial-and-error approach) for estimating the compression ratio and the impact of lossy compression on post-hoc analysis quality. We also verify the high efficiency of our ratio-quality model using different applications across the three use-cases. In addition, our experiment demonstrates that our modeling-based approach reduces the time to store the 3D RTM data with HDF5 by up to 3.4× with 128 CPU cores over the traditional solution. 
    more » « less